ENGLISH 邮件系统

第八十四期至真讲坛—美国休斯顿大学姚彦副教授、美国斯坦福大学周光敏博士讲座通知
作者:系统管理员 发布日期:2018-05-04 浏览次数:2423

报告题目一:Electrolyte Dictated Materials Design for Beyond Lithium Ion Batteries

报告人:美国休斯顿大学 姚彦 副教授

 

报告题目二:Design of High Energy Density Lithium-Sulfur Batteries

报告人:美国斯坦福大学 周光敏 博士

 

报告时间:201859日(周三)上午900

报告地点:学院会议室(子良A220

邀请人:新能源材料与技术研究所 陶新永 教授


报告人简介:

 

说明: http://www.mse.zjut.edu.cn/ueditor/jsp/upload/image/20180908/1536391554559063371.jpg                                             

姚彦现为美国休斯顿大学电子工程系和德州超导中心副教授。他于2008年博士毕业于加州大学洛杉矶分校,在Polyera公司作为高级科学家和斯坦福大学从事博士后研究  他的研究领域集中在安全和低成本的新型能源存储材料和电池设计,包括新型锂离子电池,镁离子电池,水系锂离子电池,全固态电池等。他在Nature Materials、 Nature Communications、JACS、Nano Letters 等期刊发表论文70多篇和国际专利16个,论文引用超过17000次。多年来受邀在各种国际性学术会议做报告70多次。他获得美国*实验室的青年研究员奖,Robert A. Welch 讲座教授优秀教学奖和Scialog Fellow

 

 

说明: http://www.mse.zjut.edu.cn/ueditor/jsp/upload/image/20180908/1536391554559097200.jpg

 

周光敏2014年博士毕业于中国科学院金属研究所,导师为成会明院士和李峰研究员。毕业后前往美国UT Austin从事博士后研究,合作导师为Arumugam Manthiram教授。一年后加入斯坦福大学崔屹课题组博士后至今。主要研究方向为研究方向为纳米材料设计制备及能源存储与转换,已发表论文80篇,其中第一作者及共同第一作者26篇,包括Nature Nanotechnology, Nature Communications(2篇), PNAS,Advanced Materials (4篇), Advanced Energy Materials (2篇), ACS Nano (2篇), Energy & Environmental Science (2篇), Advanced Functional Materials, Chemistry of Materials, ACS Central Science,Nano Energy(3篇), Journal of Materials Chemistry (2篇), Nanoscale, and Physical Chemistry Chemical Physics (2篇)等。这些工作已被引用 11500多次(Google Scholar)其中第一作者被引用车超过6800 (17篇文章引用超过1002010年发表在Chemistry of Materials 上的文章已被引用1440) 其中2014年发表于Advanced Materials上的论文入选2014年中国百篇最具影响国际论文,著作书籍Design, Fabrication and Electrochemical Performance of Nanostructured Carbon Based Materials for High-Energy Lithium-Sulfur Batteries以及书中章节一章 (Graphene Science Handbook), 申请9项中国专利,一个PCT专利和一个美国专利。

 

 

报告内容简述:

报告一:Lithium ion batteries have reshaped our life with their omnipresence in portable electronics. In lithium ion batteries, lithium ions are shuttled in a nonaqueous solvent between a graphite electrode and a transition metal oxide electrode through intercalation redox reactions. Over the past two decades, lithium ion batteries have steadily improved in terms of cost and lifetime. However, increasing the specific energy of these batteries is reaching its limit and high-profile fire accidents (e.g. cell phones spontaneously combusting) cast doubt of their applications in electric vehicles and large-scale energy storage. Emerging “beyond lithium ion” batteries with alternative battery chemistries may potentially offer new technologies with cost-effective materials, safe operation, and a long-life battery performance. With that being said, each beyond lithium ion battery chemistry has its own distinct fundamental challenges, and sometimes, these challenges are not very well understood. Most often, the battery’s electrolyte plays an important role in the materials design. In this talk, I will describe the distinct challenges in three beyond lithium ion batteries: aqueous, Mg ion, all solid-state batteries, and the corresponding examples of electrolyte-dictated materials design. Understanding their respective problems in combination with the ability to design new materials to tackle these challenges could enable unprecedented device performance towards cheaper, safer, and energy-dense batteries.

 

报告二:Despite the great promise of Li–S batteries, many challenges need to be addressed before they can find practical applications. For example, the low electrical conductivities of sulfur, polysulfide products and the final Li2S product affect the utilization of the active sulfur material and the rate capability of the battery. The highly soluble polysulfides in the electrolyte, which can shuttle between the anode and cathode and form a deposit of solid Li2S2/Li2S on the cathode and anode, cause an irreversible loss of sulfur, which leads to low Coulombic efficiency, low cyclic capacity and an increase in impedance. In this talk, firstly I will briefly introduce the background of rechargeable Li-S batteries, then I will talk about strategies to improve the performance of Li-S batteries from physical confinement, chemical binding and battery configuration design. Catalyzing capability of metal sulfides in promoting the conversion of sulfur species, reactivation of dead sulfur species and high energy LixSi/graphene–sulfur full cell will also be included. Finally, I will give a summary and acknowledgements.