报告题目:原位分子层面研究高分子界面及生物界面结构
Elucidation of Molecular Structures of Polymer Interfaces and Biological Intefaces in Situ
报告时间:2018年6月1日(周五)上午9:00
报告地点:子良A220学院会议室
报告人:Professor Zhan Chen, Department of Chemistry, University of Michigan, USA (陈战教授, 美国密歇根大学化学系)
邀请人:高分子材料与工程研究所 杨晋涛 教授
报告人简介:
陈战,1998年博士毕业于美国加州大学伯克利分校,1998年至2000年在美国劳伦兹伯克利国家实验室从事博士后研究;现为美国密歇根大学化学系教授,生物物理系、高分子科学及工程系及应用物理系兼职教授,东南大学生物科学与医学工程学院特聘教授,吉林大学客座教授,美国普林斯顿大学访问教授,英国皇家化学会会士,著名杂志Langmuir的副主编。陈战教授是国际著名的光谱学家,是利用光谱学从分子水平上研究复杂表界面的领军人物。他通过开发先进的光谱技术,对复杂表面和界面进行原位研究,在阐述复杂分子(如高分子与生物大分子)界面处结构、生物分子与界面相互作用及构象等领域取得了多项创新性成果,在Proc. Natl. Acad. Sci. USA, J. Am. Chem. Soc., Prog. Polym. Sci. 等杂志上发表论文近300篇,研究成果多次被Nature和Chem. Rev.等杂志和媒体介绍,多次在国际化学化工会议上做邀请报告。由于在表界面研究领域的突出成就,陈战教授于2017年被Langmuir杂志评为最高产的十名科学家之一,获得美国国家科学基金职业生涯奖,还获得了Beckman青年学者奖,日本科学振兴会客座研究员奖,道康宁教授基金等奖项。
报告内容简述:
This talk will focus on the elucidation of molecular structures of buried interfaces such as solid/solid interfaces and solid/liquid interfaces. It is very difficult to probe the above buried interfaces in situ nondestructively. We have developed a nonlinear optical spectroscopic technique, sum frequency generation (SFG) vibrational spectroscopy, into a powerful tool to study buried polymer interfaces and biological interfaces. It is important to understand molecular structures of such buried interfaces because they determine properties and functions of these interfaces, such as biocompatibility, adhesion, membrane protein functions, antifouling properties, and enzyme activities etc. Using SFG, we successfully probed molecular structures of buried interfaces of semiconductor polymers in perovskite solar cells and correlated such interfacial structures to solar cell conversion efficiency. We also successfully studied molecular structures of buried polymer/polymer interfaces to understand adhesion in microelectronics. Molecular interactions between 2D materials such as graphene or MoS2 and biological molecules were revealed, and structure-function relationships of surface immobilized enzymes were understood by SFG studies. This research demonstrated the feasibility and power of using SFG to probe molecular structures of buried interfaces at the molecular level in situ in real time.